4,202 research outputs found

    Noise-induced vortex reversal of self-propelled particles

    Full text link
    We report an interesting phenomenon of noise-induced vortex reversal in a two-dimensional system of self-propelled particles (SPP) with soft-core interactions. With the aid of forward flux sampling, we analyze the configurations along the reversal pathway and thus identify the mechanism of vortex reversal. We find that statistically the reversal exhibits a hierarchical process: those particles at the periphery first change their motion directions, and then more inner layers of particles reverse later on. Furthermore, we calculate the dependence of the average reversal rate on noise intensity DD and the number NN of SPP. We find that the rate decreases exponentially with the reciprocal of DD. Interestingly, the rate varies nonmonotonically with NN and a minimal rate exists for an intermediate value of NN.Comment: 4 pages, 5 figure

    Green-Function-Based Monte Carlo Method for Classical Fields Coupled to Fermions

    Full text link
    Microscopic models of classical degrees of freedom coupled to non-interacting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.Comment: 4 pages, 3 figure

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape

    Pairwise entanglement and readout of atomic-ensemble and optical wave-packet modes in traveling-wave Raman interactions

    Full text link
    We analyze quantum entanglement of Stokes light and atomic electronic polarization excited during single-pass, linear-regime, stimulated Raman scattering in terms of optical wave-packet modes and atomic-ensemble spatial modes. The output of this process is confirmed to be decomposable into multiple discrete, bosonic mode pairs, each pair undergoing independent evolution into a two-mode squeezed state. For this we extend the Bloch-Messiah reduction theorem, previously known for discrete linear systems (S. L. Braunstein, Phys. Rev. A, vol. 71, 055801 (2005)). We present typical mode functions in the case of one-dimensional scattering in an atomic vapor. We find that in the absence of dispersion, one mode pair dominates the process, leading to a simple interpretation of entanglement in this continuous-variable system. However, many mode pairs are excited in the presence of dispersion-induced temporal walkoff of the Stokes, as witnessed by the photon-count statistics. We also consider the readout of the stored atomic polarization using the anti-Stokes scattering process. We prove that the readout process can also be decomposed into multiple mode pairs, each pair undergoing independent evolution analogous to a beam-splitter transformation. We show that this process can have unit efficiency under realistic experimental conditions. The shape of the output light wave packet can be predicted. In case of unit readout efficiency it contains only excitations originating from a specified atomic excitation mode

    Partitioning of a polymer chain between a confining cavity and a gel

    Full text link
    A lattice field theory approach to the statistical mechanics of charged polymers in electrolyte solutions [S. Tsonchev, R. D. Coalson, and A. Duncan, Phys. Rev. E 60, 4257, (1999)] is applied to the study of a polymer chain contained in a spherical cavity but able to diffuse into a surrounding gel. The distribution of the polymer chain between the cavity and the gel is described by its partition coefficient, which is computed as a function of the number of monomers in the chain, the monomer charge, and the ion concentrations in the solution.Comment: 17 pages, 6 figure

    Resolving the notorious case of conical intersections for coupled cluster dynamics

    Full text link
    The motion of electrons and nuclei in photochemical events often involve conical intersections, degeneracies between electronic states. They serve as funnels for nuclear relaxation - on the femtosecond scale - in processes where the electrons and nuclei couple nonadiabatically. Accurate ab initio quantum chemical models are essential for interpreting experimental measurements of such phenomena. In this paper we resolve a long-standing problem in coupled cluster theory, presenting the first formulation of the theory that correctly describes conical intersections between excited electronic states of the same symmetry. This new development demonstrates that the highly accurate coupled cluster theory can be applied to describe dynamics on excited electronic states involving conical intersections.Comment: 8 pages and 3 figures and including supporting information (with corrections and improved notation

    Chiral properties of two-flavor QCD in small volume and at large lattice spacing

    Full text link
    We present results from simulations of two flavors of dynamical overlap fermions on 8^4 lattices at three values of the sea quark mass and a lattice spacing of about 0.16 fm. We measure the topological susceptibility and the chiral condensate. A comparison of the low-lying spectrum of the overlap operator with predictions from random matrix theory is made. To demonstrate the effect of the dynamical fermions, we compare meson two-point functions with quenched results. Algorithmic improvements over a previous publication and the performance of the algorithm are discussed.Comment: 16 pages, 12 figure

    Parallel density matrix propagation in spin dynamics simulations

    Full text link
    Several methods for density matrix propagation in distributed computing environments, such as clusters and graphics processing units, are proposed and evaluated. It is demonstrated that the large communication overhead associated with each propagation step (two-sided multiplication of the density matrix by an exponential propagator and its conjugate) may be avoided and the simulation recast in a form that requires virtually no inter-thread communication. Good scaling is demonstrated on a 128-core (16 nodes, 8 cores each) cluster.Comment: Submitted for publicatio

    A Fast and Efficient Algorithm for Slater Determinant Updates in Quantum Monte Carlo Simulations

    Full text link
    We present an efficient low-rank updating algorithm for updating the trial wavefunctions used in Quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the k-th step compared with traditional algorithms that require O(N^2) computations, where N is the system size. For single determinant trial wavefunctions the new algorithm is faster than the traditional O(N^2) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction type trial wavefunctions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN^2) work and O(MN^2) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration interaction type wavefunctions

    Optimal purification of a generic n-qudit state

    Get PDF
    We propose a quantum algorithm for the purification of a generic mixed state ρ\rho of a nn-qudit system by using an ancillary nn-qudit system. The algorithm is optimal in that (i) the number of ancillary qudits cannot be reduced, (ii) the number of parameters which determine the purification state Ψ>|\Psi> exactly equals the number of degrees of freedom of ρ\rho, and (iii) Ψ>|\Psi> is easily determined from the density matrix ρ\rho. Moreover, we introduce a quantum circuit in which the quantum gates are unitary transformations acting on a 2n2n-qudit system. These transformations are determined by parameters that can be tuned to generate, once the ancillary qudits are disregarded, any given mixed nn-qudit state.Comment: 8 pages, 9 figures, remarks adde
    corecore